Volume 7, Issue 5
Neimark-Sacker Bifurcation of a Semi-Discrete Lasota-Waźewska Model

Long Zhou, Yulong Li & Fengjie Geng

J. Nonl. Mod. Anal., 7 (2025), pp. 1746-1756.

Published online: 2025-09

[An open-access article; the PDF is free to any online user.]

Export citation
  • Abstract

In this paper, we derive and analyze a semi-discrete Lasota-Waźewska model. First, the existence, uniqueness, and local dynamical properties of the positive fixed point are systematically investigated. Subsequently, we explore the existence of Neimark-Sacker bifurcation and the stability of the bifurcated invariant curve. Finally, numerical simulations are provided to illustrate the theoretical findings.

  • AMS Subject Headings

39A28, 39A30, 39A60

  • Copyright

COPYRIGHT: © Global Science Press

  • Email address
  • BibTex
  • RIS
  • TXT
@Article{JNMA-7-1746, author = {Zhou , LongLi , Yulong and Geng , Fengjie}, title = {Neimark-Sacker Bifurcation of a Semi-Discrete Lasota-Waźewska Model}, journal = {Journal of Nonlinear Modeling and Analysis}, year = {2025}, volume = {7}, number = {5}, pages = {1746--1756}, abstract = {

In this paper, we derive and analyze a semi-discrete Lasota-Waźewska model. First, the existence, uniqueness, and local dynamical properties of the positive fixed point are systematically investigated. Subsequently, we explore the existence of Neimark-Sacker bifurcation and the stability of the bifurcated invariant curve. Finally, numerical simulations are provided to illustrate the theoretical findings.

}, issn = {2562-2862}, doi = {https://doi.org/10.12150/jnma.2025.1746}, url = {http://global-sci.org/intro/article_detail/jnma/24387.html} }
TY - JOUR T1 - Neimark-Sacker Bifurcation of a Semi-Discrete Lasota-Waźewska Model AU - Zhou , Long AU - Li , Yulong AU - Geng , Fengjie JO - Journal of Nonlinear Modeling and Analysis VL - 5 SP - 1746 EP - 1756 PY - 2025 DA - 2025/09 SN - 7 DO - http://doi.org/10.12150/jnma.2025.1746 UR - https://global-sci.org/intro/article_detail/jnma/24387.html KW - Semi-discrete Lasota-Waźewska model, Neimark-Sacker bifurcation, invariant curve, numerical simulation. AB -

In this paper, we derive and analyze a semi-discrete Lasota-Waźewska model. First, the existence, uniqueness, and local dynamical properties of the positive fixed point are systematically investigated. Subsequently, we explore the existence of Neimark-Sacker bifurcation and the stability of the bifurcated invariant curve. Finally, numerical simulations are provided to illustrate the theoretical findings.

Zhou , LongLi , Yulong and Geng , Fengjie. (2025). Neimark-Sacker Bifurcation of a Semi-Discrete Lasota-Waźewska Model. Journal of Nonlinear Modeling and Analysis. 7 (5). 1746-1756. doi:10.12150/jnma.2025.1746
Copy to clipboard
The citation has been copied to your clipboard